域名預(yù)訂/競(jìng)價(jià),好“米”不錯(cuò)過
大數(shù)據(jù)能否真正的具備參考價(jià)值?這在某種程度上取決于企業(yè)是否部署了合適的數(shù)據(jù)可視化分析工具。在幾乎每個(gè)部門都充斥著關(guān)于客戶、流程和運(yùn)營(yíng)的信息時(shí)代,有效的數(shù)據(jù)可視化分析工具能夠幫助企業(yè)機(jī)構(gòu)快速地建立競(jìng)爭(zhēng)優(yōu)勢(shì)。
數(shù)據(jù)可視化分析產(chǎn)品主要是通過在企業(yè)各類業(yè)務(wù)系統(tǒng)中提取數(shù)據(jù),并提供整合、分析、可視化及協(xié)作等功能,來幫助企業(yè)完成數(shù)據(jù)價(jià)值的發(fā)現(xiàn)過程。通過將原始的業(yè)務(wù)數(shù)據(jù)轉(zhuǎn)換為可理解的圖表和故事版,企業(yè)可以獲得更加直觀和快捷的業(yè)務(wù)洞察,更好地做出商務(wù)決策等等。
目前,市面上有不少數(shù)據(jù)可視化分析產(chǎn)品可供企業(yè)選擇,相對(duì)主流的產(chǎn)品包括Tableau、Qlik、Power BI以及DataHunter數(shù)據(jù)可視化分析平臺(tái)。對(duì)于國(guó)內(nèi)企業(yè)而言,想要部署一款合適的可視化產(chǎn)品,需要考慮到方方面面的因素,包括企業(yè)服務(wù)能力、支持的數(shù)據(jù)源、分析能力、故事版、協(xié)作能力、定價(jià)等,本文,我們就將根據(jù)這些因素,對(duì)以上產(chǎn)品進(jìn)行一一比較,看看每款產(chǎn)品的不同之處。
數(shù)據(jù)源
豐富的數(shù)據(jù)源可以幫助企業(yè)在進(jìn)行可視化分析時(shí)方便的接入各種系統(tǒng)和數(shù)據(jù)文件,具體包括文本文件、數(shù)據(jù)庫及其他外部文件。
在文本文件方面,Tableau的支持最為豐富,支持類型包括了Excel、CSV、txt、JSON、PDF、空間文件以及統(tǒng)計(jì)文件等,相對(duì)而言,Qlik、Power BI以及DataHunter則主要以Excel、CSV文件為主。
在數(shù)據(jù)庫方面,目前四款產(chǎn)品對(duì)主流的數(shù)據(jù)庫都有很好的支持,包括MySQL、Postgre SQL、SQL Server、Hive、GreenPlum、Oracle等。
值得一提的是,DataHunter數(shù)據(jù)可視化分析平臺(tái)也可以無縫對(duì)接第三方公共數(shù)據(jù)源,包括人口統(tǒng)計(jì)、金融、天氣等公共數(shù)據(jù),而Tableau、Qlik和Power BI需要單獨(dú)處理外部數(shù)據(jù)。此外,DataHunter還內(nèi)置了表單數(shù)據(jù)采集,方便用戶使用Excel文件創(chuàng)建表單。
數(shù)據(jù)處理
分析人員往往會(huì)在數(shù)據(jù)處理環(huán)節(jié)浪費(fèi)大量時(shí)間,因?yàn)樵诖蠖鄶?shù)情況下,采集到的數(shù)據(jù)都比較“臟”,例如行中可能缺字段,或者可能包含無意義的值。這個(gè)時(shí)候,高效、便捷的數(shù)據(jù)處理能力,可以幫助分析人員快速完成這一過程,從而提高工作效率。
在數(shù)據(jù)整合方面,Tableau、Qlik、Power BI和DataHunter都可以對(duì)各種來源的數(shù)據(jù)進(jìn)行統(tǒng)一處理,所不同的是,DataHunter支持整合企業(yè)內(nèi)所有系統(tǒng)數(shù)據(jù)源,Tableau則可以通過Tableau Prep產(chǎn)品實(shí)現(xiàn),而Qlik和Power BI則需要借助第三方工具。此外,DataHunter內(nèi)置了ETL清洗器,可將多種數(shù)據(jù)源、數(shù)據(jù)格式歸一化。
分析能力
分析能力是數(shù)據(jù)可視化產(chǎn)品的主要賣點(diǎn)之一,本文我們將從兩個(gè)維度進(jìn)行比較,即數(shù)據(jù)可視化和數(shù)據(jù)分析。數(shù)據(jù)可視化主要包括對(duì)圖表的支持及擴(kuò)展性;分析層面主要包括數(shù)據(jù)鉆取、交互性和高級(jí)分析等。
在基礎(chǔ)圖表方面,Tableau、Qlik、Power BI和DataHunter四款產(chǎn)品大同小異,基本上對(duì)常用的數(shù)據(jù)圖表,如柱狀圖、堆積柱圖、條圖、堆積條圖、折線圖、面積圖等都有很好的支持。同時(shí),用戶在進(jìn)行可視化分析過程中,這四款產(chǎn)品也都會(huì)進(jìn)行智能化的圖表推薦。
對(duì)于高級(jí)圖表,四款產(chǎn)品的支持種類則有所不同,Tableau支持樹狀圖、箱線圖、標(biāo)靶圖、圓視圖等;Qlik支持散點(diǎn)矩陣、關(guān)聯(lián)分析應(yīng)用圖等;Power BI支持瀑布圖、樹狀圖等;而DataHunter支持包括雷達(dá)圖、箱線圖、熱力圖、樹狀圖、關(guān)系圖、?;鶊D等。
在圖表擴(kuò)展性方面,Tableau、Power BI兩款產(chǎn)品的難度最大,需要專業(yè)技術(shù)人員的開發(fā);Qlik難度較小,但也需要使用JavaScript開發(fā);DataHunter在這方面較為靈活,自身就可接入Echars等第三方圖表以及企業(yè)自帶圖表類型。
在性能上,我們知道Tableau使用的是內(nèi)存和內(nèi)存數(shù)據(jù)庫分析體系結(jié)構(gòu)組成的混合模型,其分析功能包括數(shù)據(jù)發(fā)現(xiàn),數(shù)據(jù)可視化,地理編碼,調(diào)查分析,時(shí)間序列分析,社交分析等,同時(shí)Tableau可與R語言集成,并提供了移動(dòng)端的支持。
值得一提的是,Tableau的數(shù)據(jù)準(zhǔn)備功能較為強(qiáng)大,可以幫助分析人員快速整理數(shù)據(jù),并在同步時(shí)修復(fù)/配置數(shù)據(jù),也可將交叉表數(shù)據(jù)重新轉(zhuǎn)換為標(biāo)準(zhǔn)化列,刪除無關(guān)的標(biāo)題、文本和圖像,協(xié)調(diào)元數(shù)據(jù)字段等。
DataHunter和Qlik使用是內(nèi)存分析引擎,其優(yōu)勢(shì)在于可以處理海量的業(yè)務(wù)數(shù)據(jù),DataHunter簡(jiǎn)化了ETL的處理流程,因此即便分析人員沒有任何編程經(jīng)驗(yàn),也可以快速處理并分析數(shù)據(jù)。同時(shí),DataHunter也支持SaaS版部署模式,這使得企業(yè)可以大大減少自身服務(wù)器的負(fù)載。
如今,數(shù)據(jù)鉆取、關(guān)聯(lián)分析已經(jīng)成為數(shù)據(jù)可視化工具的必備功能,這四款產(chǎn)品對(duì)此也都有很好的支持,而對(duì)于趨勢(shì)、聚類等常用分析,特別是對(duì)R和Python的支持也同樣如此。在差異性上,DataHunter在嵌入式分析方面更為靈活,其支持企業(yè)與用戶原有系統(tǒng)集成嵌入。
協(xié)作能力
協(xié)作正在成為數(shù)據(jù)可視化分析工具的必備功能。在愈發(fā)強(qiáng)調(diào)團(tuán)隊(duì)協(xié)作的今天,企業(yè)不僅需要簡(jiǎn)單、易用、靈活的可視化工具,更需要一個(gè)可以讓各部門共享數(shù)據(jù),協(xié)同完成業(yè)務(wù)分析流程的平臺(tái),同時(shí),企業(yè)管理者也可以基于該平臺(tái)溝通問題并做出決策。
不管是數(shù)據(jù)共享還是團(tuán)隊(duì)討論,DataHunter產(chǎn)品在這方面都有很好的功能體驗(yàn),包括支持一鍵共享給團(tuán)隊(duì)內(nèi)、跨團(tuán)隊(duì)和系統(tǒng)外人員;團(tuán)隊(duì)內(nèi)成員可針對(duì)可視化看板進(jìn)行討論溝通,同時(shí)也可在系統(tǒng)內(nèi)做故事板進(jìn)行匯報(bào),此功能支持添加快照、實(shí)時(shí)圖表、形狀組件等元素。
同時(shí),Tableau和Qlik也支持用戶進(jìn)行數(shù)據(jù)協(xié)作,Tableau支持用戶通過Server端或Online端共享數(shù)據(jù)看板,用戶可在系統(tǒng)內(nèi)做故事板進(jìn)行匯報(bào),并支持添加實(shí)時(shí)圖表和文本組件。相比而言,Power BI在數(shù)據(jù)協(xié)作方面的支持并不是很好。
版本區(qū)別
在很多情況下,產(chǎn)品支持的部署方式和定價(jià)也決定著企業(yè)是否會(huì)考慮該產(chǎn)品,這也是四款產(chǎn)品最大的差異點(diǎn)之一。總體而言,Tableau和Power BI提供的版本較為豐富,而DataHunter產(chǎn)品的性價(jià)比更高。
Tableau版本:
•Tableau Desktop(用于可視化和分析數(shù)據(jù),創(chuàng)建工作簿,可視化文件和儀表板)
•Tableau Server(用于編輯和分發(fā)BI資產(chǎn))
•Tableau Online(Tableau Server的托管版本)
Qlik版本:
•Qlik Sense Desktop (桌面版)
•Qlik Sense Enterprise(企業(yè)版)
•Qlik Sense Cloud(SaaS版)
•QlikView(個(gè)人版)
Power BI版本:
•Power BI Desktop(個(gè)人桌面版,免費(fèi)下載)
•Power BI Pro(增強(qiáng)版的用戶,共享和協(xié)作功能,每位用戶每月9.99美金)
•Power BI Premium(企業(yè)部署版,無限制功能)
DataHunter版本:
•SaaS版(無限制功能,可免費(fèi)試用)
•企業(yè)部署版(可定制化部署)
如何選擇?
這四款數(shù)據(jù)可視化分析產(chǎn)品都可以幫助企業(yè)挖掘數(shù)據(jù)、可視化數(shù)據(jù),并輔助管理者做出更好的商業(yè)決策。同時(shí),也都具備優(yōu)秀的擴(kuò)展性和易用性,在移動(dòng)設(shè)備支持方面也都很出色。但是,對(duì)于國(guó)內(nèi)企業(yè)而言,如果考慮到定制化的部署和價(jià)格等因素,DataHunter數(shù)據(jù)可視化分析平臺(tái)無疑是更好的選擇,而且,DataHunter在數(shù)據(jù)協(xié)作方面也表現(xiàn)出色。
申請(qǐng)創(chuàng)業(yè)報(bào)道,分享創(chuàng)業(yè)好點(diǎn)子。點(diǎn)擊此處,共同探討創(chuàng)業(yè)新機(jī)遇!
王某漪、楊某寧是很厲害的兩個(gè)人。2018年以前“胖球數(shù)據(jù)”他們創(chuàng)業(yè)是做小程序交換閑置物品的交易平臺(tái),但做的一直不溫不火。
金電聯(lián)行是國(guó)際領(lǐng)先的大數(shù)據(jù)廠商,技術(shù)與服務(wù)已經(jīng)覆蓋從數(shù)據(jù)底層到場(chǎng)景應(yīng)用的全流程,形成Ark(方舟)平臺(tái)、Cluster(星簇)平臺(tái)、Oasis(綠洲)平臺(tái)、Magnet(磁石)平臺(tái)四大技術(shù)平臺(tái)產(chǎn)品,核心技術(shù)均自主可控,可實(shí)現(xiàn)多場(chǎng)景、跨場(chǎng)景應(yīng)用落地。
9月28日,電子科技大學(xué)-思特奇校企生態(tài)合作成果交流會(huì)在思特奇成都研發(fā)中心圓滿舉辦,該活動(dòng)作為電子科技大學(xué)校慶系列活動(dòng)之一,是產(chǎn)學(xué)研合作模式的創(chuàng)新與落地,得到了高校領(lǐng)導(dǎo)、院校師生、行業(yè)校友會(huì)企業(yè)、思特奇生態(tài)合作伙伴的大力支持和認(rèn)可。
數(shù)字化的不斷發(fā)展與普及昭示著企業(yè)粗放式的業(yè)績(jī)?cè)鲩L(zhǎng)時(shí)代已漸行漸遠(yuǎn),隨著大數(shù)據(jù)和人工智能的發(fā)展,信息化技術(shù)普及,越來越多的企業(yè)開始嘗試運(yùn)用數(shù)字化營(yíng)銷實(shí)現(xiàn)業(yè)績(jī)?cè)鲩L(zhǎng)。近日,勵(lì)銷云大數(shù)據(jù)研究院發(fā)布的《2021銷售力增長(zhǎng)S3理論研究報(bào)告》,提出了銷售力增長(zhǎng)的S3(S立方)理論,給企業(yè)業(yè)績(jī)?cè)鲩L(zhǎng)提供了一份精彩的教程
近日,同盾科技被國(guó)內(nèi)知名產(chǎn)業(yè)數(shù)字化研究與咨詢機(jī)構(gòu)“愛分析”評(píng)為優(yōu)秀代表廠商,并憑借在數(shù)據(jù)治理、機(jī)器學(xué)習(xí)模型開發(fā)、隱私計(jì)算等場(chǎng)景成熟的技術(shù)解決方案和落地實(shí)踐入選《2021愛分析·數(shù)據(jù)智能平臺(tái)廠商全景報(bào)告》(下簡(jiǎn)稱“報(bào)告”)。同時(shí)入選報(bào)告的廠商還有阿里云、騰訊云、百度、AWS、微軟等國(guó)內(nèi)外知名企業(yè)。
把脈中國(guó)數(shù)據(jù)智能化
2023年,幾乎可以被定義為中國(guó)互聯(lián)網(wǎng)公司的“大模型元年”。ChatGPT的全球爆紅,徹底點(diǎn)燃國(guó)內(nèi)的大模型賽道,曾經(jīng)的“創(chuàng)業(yè)英雄”、如今的商業(yè)領(lǐng)袖們親自下場(chǎng),接連發(fā)布生成式人工智能產(chǎn)品與大模型布局。大模型火了,沉寂許久的互聯(lián)網(wǎng)行業(yè)又有了新的“戰(zhàn)事”。同時(shí),大模型的快速發(fā)展也改變了云市場(chǎng)的現(xiàn)狀,企業(yè)對(duì)
近日,數(shù)字化市場(chǎng)研究咨詢機(jī)構(gòu)愛分析發(fā)布了《2022愛分析·數(shù)據(jù)智能廠商全景報(bào)告》,愛分析從技術(shù)研發(fā)能力、服務(wù)客戶數(shù)量、收入規(guī)模等維度對(duì)廠商進(jìn)行了全面專業(yè)的評(píng)估
2022年11月18日,首個(gè)國(guó)家級(jí)大數(shù)據(jù)產(chǎn)業(yè)創(chuàng)新賽事——2022第一屆中國(guó)大數(shù)據(jù)大賽圓滿落幕。工業(yè)和信息化部信息技術(shù)發(fā)展司數(shù)字經(jīng)濟(jì)推進(jìn)處處長(zhǎng)張建倫,中國(guó)電子技術(shù)標(biāo)準(zhǔn)化研究院副院長(zhǎng)孫文龍出席頒獎(jiǎng)典禮并致辭
2022年11月17日,在廈門市工業(yè)和信息化局的指導(dǎo)下,以“數(shù)據(jù)確權(quán)”為主題的2022數(shù)據(jù)資產(chǎn)(廈門)論壇在廈門成功舉辦。本次論壇以“數(shù)據(jù)確權(quán)”為主題,由廈門市互聯(lián)網(wǎng)域名應(yīng)用服務(wù)產(chǎn)業(yè)協(xié)會(huì)和構(gòu)信網(wǎng)(公信.中國(guó))聯(lián)合主辦
近日,國(guó)內(nèi)知名數(shù)字化市場(chǎng)研究咨詢機(jī)構(gòu)愛分析正式發(fā)布《2022愛分析·信創(chuàng)廠商全景報(bào)告》(以下簡(jiǎn)稱“報(bào)告”)。報(bào)告綜合考慮企業(yè)關(guān)注度、行業(yè)落地進(jìn)展等因素,遴選出在信創(chuàng)市場(chǎng)中具備成熟解決方案和落地能力的廠商。
10月31日下午,由數(shù)博會(huì)執(zhí)委會(huì)主辦、數(shù)據(jù)觀(北京)傳媒科技有限公司承辦、貴陽大數(shù)據(jù)交易所協(xié)辦的第四期數(shù)博思享會(huì)“實(shí)踐先行觀公共數(shù)據(jù)價(jià)值與應(yīng)用”活動(dòng)成功舉辦。
近日,由中國(guó)國(guó)際數(shù)字經(jīng)濟(jì)博覽會(huì)組委會(huì)主辦,中國(guó)電子技術(shù)標(biāo)準(zhǔn)化研究院、河北省工業(yè)和信息化廳承辦的“第一屆中國(guó)大數(shù)據(jù)大賽”(簡(jiǎn)稱大數(shù)據(jù)大賽)正式啟動(dòng)。
廣州光點(diǎn)信息科技有限公司自主研發(fā)的數(shù)據(jù)中臺(tái)產(chǎn)品GI大數(shù)據(jù)中臺(tái)V2.0產(chǎn)品是國(guó)內(nèi)率先推出符合新創(chuàng)標(biāo)準(zhǔn)的中臺(tái)產(chǎn)品,基于“大數(shù)據(jù)+AI”等技術(shù)全新打造,集數(shù)據(jù)采集、融合、治理、服務(wù)、管理為一體的旗艦平臺(tái)。
廣州光點(diǎn)信息科技有限公司自主研發(fā)的數(shù)據(jù)中臺(tái)產(chǎn)品GI大數(shù)據(jù)中臺(tái)V2.0產(chǎn)品是國(guó)內(nèi)率先推出符合新創(chuàng)標(biāo)準(zhǔn)的中臺(tái)產(chǎn)品,基于“大數(shù)據(jù)+AI”等技術(shù)全新打造,集數(shù)據(jù)采集、融合、治理、服務(wù)、管理為一體的旗艦平臺(tái)